Jump to content

Anthracene

From Wikipedia, the free encyclopedia
Anthracene
Skeletal formula and numbering system of anthracene
Skeletal formula and numbering system of anthracene
Ball-and-stick model of the anthracene molecule
Anthracene
Anthracene
Names
IUPAC name
Anthracene
Identifiers
3D model (JSmol)
1905429
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.974 Edit this at Wikidata
EC Number
  • 217-004-5
67837
KEGG
RTECS number
  • CA9350000
UNII
  • InChI=1S/C14H10/c1-2-6-12-10-14-8-4-3-7-13(14)9-11(12)5-1/h1-10H checkY
    Key: MWPLVEDNUUSJAV-UHFFFAOYSA-N checkY
  • InChI=1/C14H10/c1-2-6-12-10-14-8-4-3-7-13(14)9-11(12)5-1/h1-10H
    Key: MWPLVEDNUUSJAV-UHFFFAOYAK
  • c1ccc2cc3ccccc3cc2c1
Properties
C14H10
Molar mass 178.234 g·mol−1
Appearance Colorless
Odor Weak aromatic
Density 1.28 g/cm3 (25 °C)[1]
0.969 g/cm3 (220 °C)
Melting point 216 °C (421 °F; 489 K)[1] at 760 mmHg
Boiling point 341.3 °C (646.3 °F; 614.5 K)[1] at 760 mmHg
0.022 mg/L (0 °C)
0.044 mg/L (25 °C)
0.29 mg/L (50 °C)
0.00045% w/w (100 °C, 3.9 MPa)[2]
Solubility Soluble in alcohol, (C2H5)2O, acetone, C6H6, CHCl3,[1] CS2[3]
Solubility in ethanol 0.76 g/kg (16 °C)
19 g/kg (19.5 °C)
3.28 g/kg (25 °C)[3]
Solubility in methanol 18 g/kg (19.5 °C)[3]
Solubility in hexane 3.7 g/kg[3]
Solubility in toluene 9.2 g/kg (16.5 °C)
129.4 g/kg (100 °C)[3]
Solubility in carbon tetrachloride 7.32 g/kg[3]
log P 4.56
Vapor pressure 0.01 kPa (125.9 °C)
0.1 kPa (151.5 °C)[4]
13.4 kPa (250 °C)[5]
0.0396 L·atm/mol[6]
UV-vismax) 345.6 nm, 363.2 nm[5]
−129.8×10−6 cm3/mol[7]
Thermal conductivity 0.1416 W/(m·K) (240 °C)
0.1334 W/(m·K) (270 °C)
0.1259 W/(m·K) (300 °C)[8]
Viscosity 0.602 cP (240 °C)
0.498 cP (270 °C)
0.429 cP (300 °C)[8]
Structure
Monoclinic (290 K)[9]
P21/b[9]
D5
2h
[9]
a = 8.562 Å, b = 6.038 Å, c = 11.184 Å[9]
α = 90°, β = 124.7°, γ = 90°
Thermochemistry[10]
210.5 J/(mol·K)
207.5 J/(mol·K)
129.2 kJ/mol
7061 kJ/mol[5]
Hazards
GHS labelling:
GHS07: Exclamation markGHS09: Environmental hazard[11]
Warning
H302, H305, H315, H319, H335, H410[11]
P261, P273, P305+P351+P338, P501[11]
NFPA 704 (fire diamond)
Flash point 121 °C (250 °F; 394 K)[11]
540 °C (1,004 °F; 813 K)[11]
Lethal dose or concentration (LD, LC):
100-149 mg/kg (rats, oral)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.[13]

History and etymology

[edit]

Crude anthracene (with a melting point of only 180°) was discovered in 1832 by Jean-Baptiste Dumas and Auguste Laurent[14] who crystalized it from a fraction of coal tar later known as "anthracene oil". Since their (inaccurate) measurements showed the proportions of carbon and hydrogen of it to be the same as in naphthalene, Laurent called it paranaphtaline in his 1835 publication of the discovery,[15] which is translated to English as paranaphthalene.[14] Two years later, however, he decided to rename the compound to its modern name derived from Ancient Greek: ἄνθραξ, romanizedanthrax, lit.'coal' because after discovering other polyaromatic hydrocarbons he decided it was only one of isomers of naphthalene.[16] This notion was disproved in 1850s and 1860s.[17][18]

Occurrence and production

[edit]

Coal tar, which contains around 1.5% anthracene, remains a major source of this material. Common impurities are phenanthrene and carbazole. The mineral form of anthracene is called freitalite and is related to a coal deposit.[19] A classic laboratory method for the preparation of anthracene is by cyclodehydration of o-methyl- or o-methylene-substituted diarylketones in the so-called Elbs reaction, for example from o-tolyl phenyl ketone.[20]

Reactions

[edit]

Reduction

[edit]

Reduction of anthracene with alkali metals yields the deeply colored radical anion salts M+[anthracene] (M = Li, Na, K). Hydrogenation gives 9,10-dihydroanthracene, preserving the aromaticity of the two flanking rings.[21]

Cycloadditions

[edit]

In any solvent except water,[22] anthracene photodimerizes by the action of UV light:

Anthracene dimer

The dimer, called dianthracene (or sometimes paranthracene), is connected by a pair of new carbon-carbon bonds, the result of the [4+4] cycloaddition. It reverts to anthracene thermally or with UV irradiation below 300 nm. Substituted anthracene derivatives behave similarly. The reaction is affected by the presence of oxygen.[23][24]

Anthracene also reacts with dienophile singlet oxygen in a [4+2]-cycloaddition (Diels–Alder reaction):

Diels alder reaction of anthracene with singlet oxygen
Diels alder reaction of anthracene with singlet oxygen

With electrophiles

[edit]

Chemical oxidation occurs readily, giving anthraquinone, C14H8O2 (below), for example using hydrogen peroxide and vanadyl acetylacetonate.[25]

Anthraquione
Anthraquione

Electrophilic substitution of anthracene occurs at the 9 position. For example, formylation affords 9-anthracenecarboxaldehyde. Substitution at other positions is effected indirectly, for example starting with anthroquinone.[26] Bromination of anthracene gives 9,10-dibromoanthracene.[27]

Uses

[edit]

Anthracene is converted mainly to anthraquinone, a precursor to dyes.[28]

Niche

[edit]

Anthracene, a wide band-gap organic semiconductor is used as a scintillator for detectors of high-energy photons, electrons and alpha particles. Plastics, such as polyvinyltoluene, can be doped with anthracene to produce a plastic scintillator that is approximately water-equivalent for use in radiation therapy dosimetry. Anthracene's emission spectrum peaks at between 400 nm and 440 nm.

It is also used in wood preservatives, insecticides, and coating materials.[citation needed]

Anthracene is commonly used as a UV tracer in conformal coatings applied to printed wiring boards. The anthracene tracer allows the conformal coating to be inspected under UV light.[29]

Fluorescence of anthracene under UV light

Derivatives

[edit]
False-color AFM image of anthracene diradical, where hydrogen atoms are removed at carbons 9 and 10

A variety of anthracene derivatives find specialized uses. Derivatives having a hydroxyl group are 1-hydroxyanthracene and 2-hydroxyanthracene, homologous to phenol and naphthols, and hydroxyanthracene (also called anthrol, and anthracenol)[30][31] are pharmacologically active. Anthracene may also be found with multiple hydroxyl groups, as in 9,10-dihydroxyanthracene.

Some anthracene derivatives are used as pharmaceutical drugs, including bisantrene, trazitiline, and benzoctamine.

Occurrence

[edit]

Anthracene, as many other polycyclic aromatic hydrocarbons, is generated during combustion processes. Exposure to humans happens mainly through tobacco smoke and ingestion of food contaminated with combustion products.

Toxicology

[edit]

Many investigations indicate that anthracene is noncarcinogenic: "consistently negative findings in numerous in vitro and in vivo genotoxicity tests". Early experiments suggested otherwise because crude samples were contaminated with other polycyclic aromatic hydrocarbons. Furthermore, it is readily biodegraded in soil. It is especially susceptible to degradation in the presence of light.[28] The International Agency for Research on Cancer (IARC) classifies anthracene as IARC group 2B, possibly carcinogenic to humans.[32]

See also

[edit]

References

[edit]
  1. ^ a b c d Haynes, p. 3.28
  2. ^ Haynes, p. 5.157
  3. ^ a b c d e f Seidell, Atherton; Linke, William F. (1919). Solubilities of Inorganic and Organic Compounds (2nd ed.). New York: D. Van Nostrand Company. pp. 81.
  4. ^ Haynes, p. 6.116
  5. ^ a b c Anthracene in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD)
  6. ^ Haynes, p. 5.157
  7. ^ Haynes, p. 3.579
  8. ^ a b "Properties of Anthracene". www.infotherm.com. Wiley Information Services GmbH. Archived from the original on 2014-11-01. Retrieved 2014-06-22.
  9. ^ a b c d Douglas, Bodie E.; Ho, Shih-Ming (2007). Structure and Chemistry of Crystalline Solids. New York: Springer Science+Business Media, Inc. p. 289. ISBN 978-0-387-26147-8.
  10. ^ Haynes, p. 5.41
  11. ^ a b c d e Sigma-Aldrich Co., Anthracene.
  12. ^ "MSDS of Anthracene". www.fishersci.ca. Fisher Scientific. Retrieved 2014-06-22.
  13. ^ Lindsey, Jonathan; et al. "Anthracene". PhotochemCAD. Retrieved 20 February 2014.
  14. ^ a b Wisniak, Jaime (2009). "Auguste Laurent: Radical and radicals". Educación química. 20 (2): 166–175. doi:10.1016/S0187-893X(18)30023-5. ISSN 0187-893X. Archived from the original on November 11, 2024.
  15. ^ fr:Comptes rendus de l'Académie des sciences/Tome 1, 1835/7 décembre  – via Wikisource.
  16. ^ Annales de chimie et de physique (in French). 1837.
  17. ^ "À propos de l'anthracène et de l'alizarine - p3 - N°467 - L'Actualité Chimique, le journal de la SCF". Société Chimique de France (SCF) (in French). Retrieved 2024-11-11.
  18. ^ Jackson, C. Loring; White, J. Fleming (1880). "Researches on the Substituted Benzyl Compounds. Ninth Paper. The Synthesis of Anthracene and Phenanthrene from Orthobrombenzylbromide". Proceedings of the American Academy of Arts and Sciences. 16: 63–77. doi:10.2307/25138602. ISSN 0199-9818. JSTOR 25138602.
  19. ^ Freitalite, Mindat, https://www.mindat.org/min-54360.html
  20. ^ "Anthracene". American Chemical Society. Retrieved 2022-09-14.
  21. ^ Bass, K. C. (1962). "9,10-Dihydroanthracene". Organic Syntheses. 42: 48. doi:10.15227/orgsyn.042.0048.
  22. ^ Johnson, Keith E.; Pagni, Richard M., "Liquid salts for reactions", Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley, p. 28, doi:10.1002/0471238961.liqupagn.a01, ISBN 9780471238966
  23. ^ Rickborn, Bruce (1998). "The Retro– <SCP>D</SCP> iels– <SCP>A</SCP> lder Reaction Part <SCP>I</SCP> . <SCP>C</SCP>  <SCP>C</SCP> Dienophiles". Organic Reactions. pp. 1–393. doi:10.1002/0471264180.or052.01. ISBN 978-0-471-26418-7.
  24. ^ Bouas-Laurent, Henri; Desvergne, Jean-Pierre; Castellan, Alain; Lapouyade, Rene (2000). "Photodimerization of anthracenes in fluid solution: Structural aspects". Chemical Society Reviews. 29: 43–55. doi:10.1039/a801821i.
  25. ^ Charleton, Kimberly D. M.; Prokopchuk, Ernest M. (2011). "Coordination Complexes as Catalysts: The Oxidation of Anthracene by Hydrogen Peroxide in the Presence of VO(acac)2". Journal of Chemical Education. 88 (8): 1155–1157. Bibcode:2011JChEd..88.1155C. doi:10.1021/ed100843a.
  26. ^ Škalamera, Đani; Veljković, Jelena; Ptiček, Lucija; Sambol, Matija; Mlinarić-Majerski, Kata; Basarić, Nikola (2017). "Synthesis of asymmetrically disubstituted anthracenes". Tetrahedron. 73 (40): 5892–5899. doi:10.1016/j.tet.2017.08.038.
  27. ^ Heilbron, I. M.; Heaton, J. S. (1923). "9,10-Dibromoanthracene". Organic Syntheses. 3: 41. doi:10.15227/orgsyn.003.0041.
  28. ^ a b Collin, Gerd; Höke, Hartmut and Talbiersky, Jörg (2006) "Anthracene" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a02_343.pub2
  29. ^ Zeitler, Alex (2012-06-27) Conformal Coating 101: General Overview, Process Development, and Control Methods. BTW, Inc.
  30. ^ 1-Hydroxyanthracene. NIST datapage
  31. ^ 2-Hydroxyanthracene. NIST datapage
  32. ^ "IARC Monographs evaluate the carcinogenicity of anthracene, 2-bromopropane, butyl methacrylate, and dimethyl hydrogen phosphite". www.iarc.who.int. Retrieved 2025-01-17.

Cited sources

[edit]
[edit]